Auxiliary Sdes for Homogenization of Quasilinear Pdes with Periodic Coefficients

نویسندگان

  • François Delarue
  • F. DELARUE
چکیده

We study the homogenization property of systems of quasi-linear PDEs of parabolic type with periodic coefficients, highly oscillating drift and highly oscillating nonlinear term. To this end, we propose a probabilistic approach based on the theory of forward–backward stochastic differential equations and introduce the new concept of " auxiliary SDEs. " 1. Introduction and assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic homogenization of quasilinear PDEs with a spatial degeneracy

We investigate stochastic homogenization for some degenerate quasilinear parabolic PDEs. The underlying nonlinear operator degenerates along the space variable, uniformly in the nonlinear term: the degeneracy points correspond to the degeneracy points of a reference diffusion operator on the random medium. Assuming that this reference diffusion operator is ergodic, we can prove the homogenizati...

متن کامل

Multiscale problems and homogenization for second-order Hamilton–Jacobi equations

We prove a general convergence result for singular perturbations with an arbitrary number of scales of fully nonlinear degenerate parabolic PDEs. As a special case we cover the iterated homogenization for such equations with oscillating initial data. Explicit examples, among others, are the two-scale homogenization of quasilinear equations driven by a general hypoelliptic operator and the n-sca...

متن کامل

Acoustic Wave Propagation in a Composite of Two Different Poroelastic Materials with a Very Rough Periodic Interface: a Homogenization Approach

Homogenization is used to analyze the system of Biot-type partial differential equations in a domain of two different poroelastic materials with a very rough periodic interface. It is shown that by using homogenization, such a rough interface can be replaced by an equivalent flat layer within which a system of modified differential equations holds. The coefficients of this new system of equatio...

متن کامل

Flux Norm Approach to Homogenization Problems with Non-separated Scales

We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...

متن کامل

Flux Norm Approach to Homogenization Problems with Non-separated Scales Leonid Berlyand and Houman Owhadi

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), Ω ⊂ R) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004